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On the Estimation of Catalytic Rate Equation Parameters 

The analysis of reaction rate data to de- 
termine the parameters of a suitable rate 
model is a familiar exercise to the catalytic 
reaction engineer. Usually a method of 
analysis, hopefully based on a firm statisti- 
cal foundation, is selected and applied to a 
variety of models using appropriate compu- 
tational techniques in order to determine 
which model provides the “best” fit to the 
available experimental data. However, 
there are many possible pitfalls in this pro- 
cess, especially in the selection of the ana- 
lytical method. The purpose of this note is 
to detail our experiences in just such a situ- 
ation. 

In a recent paper (I) we demonstrated 
that cumene disproportionation was a feasi- 
ble probe reaction for characterization of 
the acidic function of a dual-functional hy- 
drocracking catalyst. Catalyst deactivation 
was slow enough in the experiments re- 
ported to permit reproducible extrapolation 
to zero time-on-stream, and the resultant 
initial rate data agreed well with a 
Langmuir-Hinshelwood kinetic model. The 
form of this model is indicated by 

k, K:P:: 
’ = [ 1 + K2Pc12 Ul 

where 

kl = ky exp(-EIR7’) [21 
K2 = s exp(QlRT) 131 

The four parameters of this modeb k!, .E, 
@, and Q, were determined by analysis of 
the initial rate data through .application of 
an unweighted linear least-squares method 
in a two-step procedure,-as follows: Equa- 
tion [l] was first rewritten in a linear-form in 

terms of the variables r-o.5 and PC’, as 
shown in 

and the values of kl and K2 were deter- 
mined from data at each of three tempera- 
tures using linear least-squares. Equations 
[2] and [3] were then transformed as shown 
in 

In kl = In ky + (-E/RI’) PI 
In K2 = In @ + (Q/RT) bl 

and the linear least-squares method was 
used again to find the constants in these 
relations between In k,, In K2, and I/T. The 
resultant estimates of these parameters are 
listed for reference in the column labeled 
“Linear regression” in Table 1 (1). Also 
listed are some measures of the goodness of 
fit of these equations (using the indicated 
parameter estimates) to the experimental 
data employed. These results indicate that 
a generally good fit was obtained, consider- 
ing the usual scatter in experimental reac- 
tion rate data. 

Despite the apparent success of this 
procedure, we decided to investigate the 
analysis of the rate data further in hopes 
of uncovering a more efficient and 
straightforward method for parameter esti- 
mation, since the use of the two-step pro- 
cess described above was motivated more 
by expediency than statistical justification. 
Indeed, the theoretical bases for use of un- 
weighted linear ,least-squares analysis were 
notsatisfied in this prior work. In particu- 
lar, linearizing the rate equation violates 
the requirement of constant variance in ran- 
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TABLE 1 

Kinetic Parameters of Cumene Disproportionation 
Rate Expression Based on Rates of Reaction 

Extrapolated to Undeactivated Catalyst by 
Hyperbolic Correlation 

Parameters Linear Nonlinear 
regression regression 

E (kcahmol) 20.8 22.5 
Q (kcahmol) 19.7 7.7 
k’j (molig cat . min) 8.36 x lo5 6.25 x IO6 

z (atm-‘) 
9.44 x 10-g 5.20 x IO-3 

.?a 10.0 10.5 
emax 20.5 24.7 
k*jb 5.3 
Gax 12.2 
Sum of squares 1.04 x 10-g 5.90 x 10-10 

of the residuals 

a Average value of ei, where ei = [(~~t,~., - rpred,i)/robr.rl 
x 100. 

b Average value of e:, where e: = [(T;$,: - r,$)/ 
r$] x 100. 

dom error for the unweighted linear least- 
squares method (2-7). 

One way to circumvent this difficulty is 
to substitute Eqs. [2] and 131 into the rate 
equation (Eq. [l]) and then to perform a 
nonlinear regression on all of the rate data 
simultaneously in a one-step procedure (4, 
8). This was done using the results of the 
previous two-step linearized procedure as 
initial estimates and employing the Mar- 
quardt iteration technique and NREG, a 
nonlinear regression subroutine provided 
by Vogelback Computing Center at North- 
western University. To ensure rapid con- 
vergence, the rate parameters were rede- 
fined prior to analysis as (9) 

k, = ky exp[-E/R(l/T - l/T)] 171 

I@ = ky exp[-El(RT)] Bl 

K2 = K$ exp[Q/R(l/T - I/T)] [91 

E! = Kq exp[Ql(RT)] [lOI 

where z the average absolute temperature 
of the set of data, has been introduced as a 
convenient scaling factor. The results of 

this analysis are also listed in Table 1 in the 
column labeled “Nonlinear regression.” 

Examination of the sum of the squares of 
the residuals and the average deviations as 
determined by the nonlinear regression 
method indicates once again that the pro- 
posed rate model (Eq. [ 11) provides a good 
fit to the available data. Furthermore, the 
nonlinear regression method apparently 
leads to parameters which offer a some- 
what better overall fit than those found by 
the linearized two-step approach. How- 
ever, there are major differences in the 
parameter values obtained by these two 
different methods of data analysis, par- 
ticularly in the estimates of # and Q. 
Because the two-step linear least-squares 
method is not fully justified in the present 
case, we believe the parameter values 
found by nonlinear regression are more ap- 
propriate. 

It has been shown previously (4, 5) that 
although the simpler linearized approach is 
frequently satisfactory, it may indeed be in- 
adequate for the estimation of kinetic pa- 
rameters under some conditions. The bal- 
ance of this note is aimed at exploring the 
range of validity and robustness of this sim- 
pler approach as well as the sensitivity of 
parameter estimates made by both methods 
to random errors in the data. 

To accomplish these goals, a computer 
program was written to generate data com- 
parable to those generated in our experi- 
ments and, subsequently, to analyze these 
data using the two techniques mentioned 
above. 

Simulated kinetic data were generated 
using the Langmuir-Hinshelwood model of 
Eq. [l] but incorporating a random error 
contribution determined from a Gaussian 
distribution typical of most experimentally 
based parameters (10). Consequently, Ti, 
the simulated rate of reaction at tempera- 
ture Ti and cumene partial pressure Pi, was 
determined by generating a random number 
from a Gaussian distribution g(&, CJ) with 
mean of fi and standard deviation (T. The 
mean rate of reaction, T;;, is defined as 
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= P(l)~~P[-P(3)~~il(P(2)e~P[P(4)lTi1)2~l 
(1 + PW~P[P(4~Wi)2 

where for convenience the vector p has 
been introduced to represent the kinetic pa- 
rameters. Specifically, 

P(1) = k: P(2) = G! 

p(3) = EIR P(4) = Q/R WI 

For present purposes, the standard devia- 
tion (T was assumed to be homogeneous, 
i.e., the variance in random error over the 
range of independent variables examined 
was constant. (In this case the kinetic data 
are said to be homoscedastic. The effect of 
heteroscedasticity on parameter estimation 
in nonlinear models has been discussed 
elsewhere (7).) Calculations were per- 
formed using the two different sets of ki- 

netic parameters found previously by linear 
and nonlinear regression methods and re- 
ported in Table 1. These are listed for refer- 
ence in the first rows of Tables 2 and 3. 

Ten sets of numerical experiments were 
carried out. Each set consisted of 30 simu- 
lated rate measurements with two calcu- 
lated at each point of the following temper- 
ature-pressure grid: temperatures of 150, 
175, and 200” C; pressures of 0.05,0.1,0.25, 
0.50, and 0.75 atm. Each of these 30 point 
sets was then analyzed by the two-step lin- 
ear regression method and by nonlinear re- 
gression to yield vectors of the model pa- 
rameters. These are designated as pL and 
PNL, respectively. In addition, a(Z), the ra- 
tios of the final estimates of each parameter 

TABLE 2 

Comparison of Parameter Estimates Using Linear Regression Data Set 

Std. Devn. Item P(1) x 10-C P(2) x 108 P(3) x 10-S P(4) x 10-d 

Base data set 

1 x 10-s 

@LO) 

1 x lo-’ (PNdO) 
hm 

(PLO) 

1 2 10-G (PNLQ) 

(ff(O) 

@L(O) 

2 x 10-G (bNL(I)) 

Mm 

@L(I)) 
3 x 10-6 @NL(fl) 

(40) 

(PLO) 

4 x 10-S @NL(I)) 

(40) 

.836 
.835 f. ,002 
,836 k .OOl 
.999 * ,002 

,831 2 .017 
.837 f  ,010 
,991 t .019 

,835 2 .145 
,851 + .092 
.949 k .166 

,862 zi ,325 
.884 ? .176 
,984 2 .321 

1.037 f  .572 
,934 2 ,254 

1.126 2 .504 

a 

.944 
,942 + .014 
.944 2 ,003 
,998 r ,014 

.926 t ,128 
,945 2 .028 
.974 e ,129 

L1 

,104 
.104 + ,000 
,104 t .oOO 

1.000 2 .OOo 

,104 r .OOo 
.104 ? ,000 

1.000 f  ,001 

.103 ? ,001 

.104 2 .OOl 

.997 2 .008 

.103 k .002 

.104 + ,001 
,995 ? .017 

.103 k ,029 

.104 2 .002 

.994 + ,027 

,103 ” .044 
.104 f  .021 
.989 2 .032 

.983 
,983 z!z .OOl 
.983 f  BOO 

1.000 t .oOO 

.984 ” .006 

.983 2 .OOl 
1.002 2 ,006 

1.003 2 .062 
,982 k .013 

1.021 * .060 

1.033 2 ,132 
.983 k .026 

1.051 f  ,129 

1.088 t ,225 
.983 + .039 

1.105 2 .218 

1.642 k .781 
,983 k .052 

1.673 k .806 

r? Differences between linear least-squares estimate and nonlinear regression estimate larger than 1 order of 
magnitude. 
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TABLE 3 

Comparison of Parameter Estimates Using Nonlinear Regression Data Set 

Std. Devn. Item P(l) x 10-e P(2) x 108 P(3) x lo-’ p(4) x 10-d 

Base data set ,625 ,520 ,113 ,385 
(Pm .625 z!z ,002 ,518 +- ,005 ,113 k ,000 ,385 2 ,000 

1 x 10-a (PNL(J)) ,625 2 .OOl ,520 +- ,001 ,113 2 ,000 ,385 2 ,000 
WN ,999 + ,002 ,998 2 ,009 1.000 ?. ,000 1.000 ” .ooo 

&(I)) ,624 + ,014 ,510 2 ,053 .113 f  ,000 ,386 r .005 
1 x 10-7 @NL(I)) .627 2 .006 ,517 + ,012 ,113 k ,000 ,385 2 ,001 

km ,994 2 ,018 ,985 + .090 1.000 ” .OOl 1.003 k ,012 

@LO) ,641 2 ,148 1.103 + 1.412 ,112 k .OOl ,397 k .047 
1 x 10-C (PNL(I)) ,651 2 .057 .511 k ,127 ,113 2 .ooo ,388 k ,011 

(4) .974 ? ,179 1.858 + 2.010 ,998 ” ,008 1.021 + ,110 

(Pm .738 k ,336 ,112 +- ,002 ,405 + .lOl 
2 x 10-G @NL(I)) ,687 2 .116 ,113 ‘- .OOl .392 ? ,022 

k4l)) 1.027 t ,379 ,995 It ,017 1.027 2 .237 

(Pm .lll ? ,008 
4 x 10-e (PNL(I)) ,113 + ,002 

km) ,977 k .071 

u Differences between linear-least-squares estimate and nonlinear regression estimate larger than 1 order of 
magnitude. 

from the two methods, were calculated. Fi- 
nally, the parameter estimates and the val- 
ues of ct(fl were averaged and the corre- 
sponding 95% confidence intervals were 
calculated. The results of these calculations 
are indicated in Tables 2 and 3 for several 
different values of the assumed standard 
deviation used in the data generation pro- 
cess. 

Although the use of unweighted linear 
least-squares in place of weighted linear 
least-squares or nonlinear regression is not 
really justified at present, this method 
should not introduce any bias in the param- 
eter estimates (11). Therefore, analysis of a 
sufficiently large number of observations by 
the two-step procedure should yield valid 
estimates. Furthermore, V(y(x)), the vari- 
ance of the transformed dependent variable 
y(x), is related to V(x), the variance of the 
dependent variable, x, as (12) 

V(Y(X)) = (-& (Yw)2 V(x) iI31 

Consequently, in the limit as V(x) ap- 
proaches zero, V(y(x)) also approaches 

zero and both techniques yield “exact” 
fits. In the present case, the roles of x and 
y(x) are played by the following pairs: Y and 
r-O.*; k, and In k,; K2 and In K2. Thus, at low 
standard deviations we expect close agree- 
ment between the two sets of estimates pre- 
sented in Tables 2 and 3. As the standard 
deviation increases, however, 10 sets of 30 
experiments or observations may not be 
sufficient and the averaged estimates of the 
parameters from either method are likely to 
differ from the true values. 

Careful examination of the results re- 
veals the following: At standard deviations 
less than lo-‘, both the linear and nonlinear 
regression techniques yield accurate and 
precise estimates of the parameters of the 
model. This is shown by the magnitude as 
well as the small confidence limits of the 
average parameter estimates. As the stan- 
dard deviation of the distribution from 
which the rates of reaction are calculated 
increases, the 95% confidence interval as- 
sociated with each kinetic parameter in- 
creases. In addition, the confidence inter- 
vals of the average estimates of the 
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TABLE 4 

Scatter in Alternative Parameter Estimates Using Linear Regression Data Set (u = 4.0 x 10e6) 

Item /3(l) x 10-C P(2) x 108 P(3) x 10-s P(4) x 10-d 

Base data set 

(a) Case 1 
PLO 

PNLVI 

(b) Case 2 
PLKI 

PNL(fi 

.836 .944 .I04 .983 

1.701 .132 x lo-lo .I07 2.140 
1.412 .447 .106 1.016 

1.226 .176 ,105 1.060 
1.098 1.565 .10.5 0.960 

parameters determined by the two-step 
technique are always larger than those de- 
termined by nonlinear regression, as ex- 
pected (5). Furthermore, the preexponen- 
tial factors show greater variation than the 
exponential parameters while p(2) and p(4), 
which enter the rate equation in a more 
nonlinear fashion, exhibit greater variation 
than p(1) and p(3), respectively. 

Some indication of the variability of indi- 
vidual estimates of the kinetic parameters is 
shown by the example listed in Table 4, 
where two sets of estimates made with both 
calculational models and with a value of 
standard deviation u comparable to that of 
our original experimental measurements 
are presented. Case 1 illustrates a situation 
in which the estimates from the two differ- 
ent approaches are distinctly different. In 
particular, the two-step and the nonlinear 
regression estimates of p(2) and p(4) differ 
by factors of lOi and 2, respectively. Simi- 
lar behavior was observed in the linearized 
and nonlinear regression estimates based 
on the experimental data (see Table 1). 
Case 2, on the other hand, indicates an- 
other set of estimates that are considerably 
closer to one another, despite the large 
value of U. The estimates of p(2) are clearly 
much more variable than those for the other 
parameters of the model. In the analysis of 
kinetic data with large values of (+. the oc- 
currence of behavior similar to either of 
these two cases is a matter of chance. 

These numerical studies have demon- 
strated that disagreement between the esti- 
mates of the parameters in Langmuir-Hin- 

shelwood rate models made by the linear 
and the nonlinear regression techniques are 
not only possible, but quite likely, depend- 
ing upon the expected standard deviation in 
the original data set as well as the total 
number of observations available for analy- 
sis. Clearly, reducing the former and in- 
creasing the latter will result in much better 
estimates of the model parameters as well 
as convergence between estimates made 
from different techniques. In the face of ex- 
perimental realities with a limited set of 
results, it is clear that use of a nonlinear 
regression analysis is more reliable. 

As Kittrell et al. [l I] have pointed out, 
one important problem in applications of 
nonlinear regression analysis is the deter- 
mination of reasonable initial estimates of 
the unknown parameters required to initi- 
ate the iteration procedure. These initial es- 
timates influence significantly the conver- 
gence of the estimation, the parameter 
values so estimated, and the sum of the 
squares of the residuals at convergence. 
They have suggested several methods of 
obtaining these initial estimates that in- 
clude: use of prior information, cyclic pa- 
rameter estimation, linearization, grid 
search, and analog simulation. In the nu- 
merical studies presented here the initial 
parameter estimates were obtained by lin- 
earization and convergence was obtained 
for all cases examined. We thus conclude 
that linearized estimates of parameter val- 
ues provide a reasonable beginning point 
for the four parameter models so often in- 
volved in catalytic correlations. 
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APPENDIX: NOTATION Ti 

ei percentage deviation of model 
reaction rate from observed r 

value for experiment i (see 
Table 1) V(x) 

ei* percentage deviation of in- 4 

verse square root of model 
reaction rate from observed 
value for experiment i (see 
Table 1) P 

E activation energy, kcal/mol 
f(T;, Pi, j3) simulated rate function (see PL 

Eq. [ill>, mol/(g . cat . 
min) 

Gaussian distribution with PNL 
mean value ?i and standard 
deviation o 

ters determined by nonlin- 
ear regression 

rate constant (see Eqs. [ 11 and 
[2]), mol/(g . cat . min) 

preexponential factor (see Eq. 
PII 

CT standard deviation in Gaus- 
sian distribution 
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